Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1,8-Diiodoanthracene

Waka Nakanishi, Shunpei Hitosugi, Anna Piskareva and Hirovuki Isobe*

Department of Chemistry, Tohoku University, Aoba-ku, Sendai 980-8578, Japan Correspondence e-mail: isobe@m.tohoku.ac.jp

Received 25 August 2010; accepted 31 August 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.014; wR factor = 0.038; data-to-parameter ratio = 20.0.

The molecule of the title compound, $C_{14}H_8I_2$, an intermediate in the synthesis of organic materials, is nearly planar, the maximum deviation from the mean plane being 0.032 (1) Å for the C atoms and 0.082 (2) Å for the I atoms. In the crystal structure, a sandwich-herringbone arrangement of molecules is observed, whereas a columnar π -stacking arrangement has been reported for the chlorinated congener 1,8-dichloroanthracene. Similar effects of halogen substituents on the modulation of packing arrangements are reported for halogenated aromatic compounds such as tetracenes and chrycenes.

Related literature

For the synthesis, see: Lovell & Joule (1997); Goichi et al. (2005). For the crystal structure of related 1,8-dichloroanthracenes, see: Desvergne et al., (1978); Benites et al., (1996). For similar halogen effects on the arrangement of aromatic molecules, see: Moon et al. (2004); Isobe et al. (2009). For an example of synthetic utility of the title compound in organic materials, see: Nakanishi et al. (2010).

Experimental

Crystal data $C_{14}H_8I_2$ $M_r = 430.00$

Monoclinic, $P2_1/c$ a = 10.1167 (11) Å b = 10.8680 (11) Åc = 11.3930 (12) Å $\beta = 101.829 (1)^{\circ}$ V = 1226.0 (2) Å³ Z = 4

Data collection

Bruker APEXII CCD area-detector	13646 measured reflections
diffractometer	2904 independent reflections
Absorption correction: multi-scan	2783 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.016$
$T_{\min} = 0.429, \ T_{\max} = 0.630$	

Refinement $R[F^2 > 2\sigma(F^2)] = 0.014$ $wR(F^2) = 0.038$

2904 reflections

S = 1.09

145 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.62 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.63 \text{ e } \text{\AA}^{-3}$

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97, Yadokari-XG (Kabuto et al., 2009) and publCIF (Westrip, 2010).

This study was partly supported by KAKENHI (21685005, 20108015 to HI and 22550094 to WN) and the Global COE Program (Molecular Complex Chemistry). We thank Professor T. Iwamoto for generous time for X-ray analysis. SH thanks the Global COE program for a predoctoral fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2197).

References

- Benites, M. R., Maverick, A. W. & Fronczek, F. R. (1996). Acta Cryst. C52, 647-648.
- Bruker (2004). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Desvergne, J.-P., Chekpo, F. & Bouas-Laurent, H. (1978). J. Chem. Soc. Perkin Trans. 2, pp. 84-87.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Goichi, M., Segawa, K., Suzuki, S. & Toyota, S. (2005). Synthesis, pp. 2116-2118.
- Isobe, H., Hitosugi, S., Matsuno, T., Iwamoto, T. & Ichikawa, J. (2009). Org. Lett. 11, 4026-4028.
- Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Cryst. Soc. Jpn, 51, 218-224.
- Lovell, J. M. & Joule, J. A. (1997). Synth. Commun. 27, 1209-1216.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
- Moon, H., Zeis, R., Borkent, E.-J., Besnard, C., Lovinger, A. J., Siegrist, T., Kloc, C. & Bao, Z. (2004). J. Am. Chem. Soc. 126, 15322-15323.
- Nakanishi, W., Hitosugi, S., Piskareva, A., Shimada, Y., Taka, H., Kita, H. & Isobe, H. (2010). Angew. Chem. Int. Ed. doi:10.1002/anie.201002432.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Mo $K\alpha$ radiation

 $0.20 \times 0.20 \times 0.10$ mm

 $\mu = 5.10 \text{ mm}^{-1}$

T = 100 K

supplementary materials

Acta Cryst. (2010). E66, o2515 [doi:10.1107/S1600536810035191]

1,8-Diiodoanthracene

W. Nakanishi, S. Hitosugi, A. Piskareva and H. Isobe

Comment

Accenes are important compounds for the development of organic electronics, and the halogenated derivatives are of topical interest due to the unique packing arrangements (Moon *et al.*, 2004; Isobe *et al.*, 2009). The crystal structure of 1,8-dihaloanthracenes has been reported only for a chlorinated compound (Desvergne *et al.*, 1978; Benites *et al.*, 1996), and a columnar π -stacking arrangement of the molecules in the crystal has been revealed. We obtained a single-crystal of 1,8-diiodoanthracene and found a sandwich-herringbone arrangement of the molecules in the crystal. The molecular structure is shown in Fig. 1, and the packing structure is shown in Fig. 2. The distance of π -stacking between the sandwiched dimer is 3.401 Å. The CH- π and halogen- π distances for the herringbone contacts are 2.908 (7) and 3.446 (3) Å, respectively.

Experimental

The title compound was synthesized from 4,5-diiodo-9-anthrone by a procedure similar to those reported in literatures (Lovell *et al.*, 1997; Goichi *et al.*, 2005). A single-crystal suitable for X-ray crystallographic analysis was obtained by recrystallization from a mixture of hexanes and dichloromethane (5:1).

Refinement

H atoms were included in calculated positions and treated as riding atoms, with C—H = 0.9 Å (aromatic) and $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

Fig. 2. The sandwich-herringbone packing of the title compound, viewed along the a axis.

1,8-Diiodoanthracene

Crystal data	
$C_{14}H_8I_2$	F(000) = 792
$M_r = 430.00$	$D_{\rm x} = 2.330 {\rm ~Mg~m^{-3}}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 5335 reflections
a = 10.1167 (11) Å	$\theta = 2.6 - 27.8^{\circ}$
b = 10.8680 (11) Å	$\mu = 5.10 \text{ mm}^{-1}$
c = 11.3930 (12) Å	T = 100 K
$\beta = 101.829 \ (1)^{\circ}$	Cubic, green
$V = 1226.0 (2) \text{ Å}^3$	$0.20\times0.20\times0.10~mm$
Z = 4	

Data collection

Bruker APEXII CCD area-detector diffractometer	2904 independent reflections
Radiation source: Bruker TXS fine-focus rotating an- ode	2783 reflections with $I > 2\sigma(I)$
Bruker Helios multilayer confocal mirror	$R_{\rm int} = 0.016$
Detector resolution: 8.333 pixels mm ⁻¹	$\theta_{\text{max}} = 27.9^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$
ϕ and ω scans	$h = -13 \rightarrow 12$
Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996)	$k = -14 \rightarrow 14$
$T_{\min} = 0.429, \ T_{\max} = 0.630$	$l = -14 \rightarrow 14$
13646 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.014$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.038$	H-atom parameters constrained
<i>S</i> = 1.09	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0197P)^{2} + 0.8912P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
2904 reflections	$(\Delta/\sigma)_{\rm max} = 0.005$
145 parameters	$\Delta \rho_{max} = 0.62 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.63 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
I1	0.760513 (11)	1.050372 (9)	0.779962 (10)	0.01704 (4)
I2	0.242248 (11)	1.052601 (9)	0.591438 (9)	0.01734 (4)
C8	0.21957 (18)	0.93209 (15)	0.73076 (15)	0.0147 (3)
C9	0.46782 (17)	0.93129 (14)	0.81821 (14)	0.0138 (3)
H7	0.4839	0.9827	0.7552	0.017*
C13	0.33549 (17)	0.89456 (14)	0.81903 (14)	0.0136 (3)
C7	0.09231 (17)	0.89426 (16)	0.73555 (15)	0.0178 (3)
H6	0.0179	0.9195	0.6752	0.021*
C5	0.17608 (18)	0.77913 (15)	0.91729 (15)	0.0174 (3)
H4	0.1600	0.7278	0.9804	0.021*
C6	0.07051 (17)	0.81682 (16)	0.83110 (15)	0.0188 (3)
H5	-0.0185	0.7915	0.8344	0.023*
C14	0.31114 (17)	0.81568 (14)	0.91435 (14)	0.0144 (3)
C11	0.57708 (17)	0.89446 (14)	0.90752 (14)	0.0137 (3)
C12	0.55249 (17)	0.81532 (14)	1.00247 (14)	0.0146 (3)
C10	0.42066 (17)	0.77828 (15)	1.00274 (14)	0.0158 (3)
H8	0.4048	0.7258	1.0651	0.019*
C4	0.66292 (18)	0.77839 (15)	1.09544 (15)	0.0173 (3)
H3	0.6470	0.7262	1.1580	0.021*
C1	0.71420 (18)	0.93258 (15)	0.91241 (15)	0.0143 (3)
C2	0.81750 (17)	0.89582 (15)	1.00237 (15)	0.0171 (3)
H1	0.9071	0.9225	1.0032	0.020*
C3	0.79074 (18)	0.81744 (16)	1.09492 (15)	0.0186 (3)
H2	0.8631	0.7920	1.1572	0.022*

Atomic displacement parameters (\AA^2)						
	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
I1	0.01809 (7)	0.01676 (6)	0.01754 (7)	-0.00121 (4)	0.00662 (5)	0.00173 (4)
I2	0.02054 (7)	0.01650 (7)	0.01391 (6)	0.00081 (4)	0.00105 (5)	0.00270 (3)
C8	0.0183 (8)	0.0134 (7)	0.0128 (7)	0.0009 (6)	0.0040 (6)	-0.0012 (5)
C9	0.0178 (7)	0.0117 (7)	0.0126 (7)	0.0006 (6)	0.0042 (6)	0.0000 (5)

supplementary materials

C13	0.0178 (8)	0.0097 (7)	0.0139 (7)	0.0001 (6)	0.0045 (6)	-0.0019 (5)
C7	0.0160 (8)	0.0192 (8)	0.0173 (8)	0.0001 (6)	0.0015 (6)	-0.0039 (6)
C5	0.0231 (8)	0.0144 (7)	0.0163 (7)	-0.0032 (6)	0.0083 (6)	-0.0024 (6)
C6	0.0170 (8)	0.0199 (8)	0.0209 (8)	-0.0043 (6)	0.0069 (6)	-0.0057 (6)
C14	0.0193 (8)	0.0105 (7)	0.0141 (7)	-0.0005 (6)	0.0051 (6)	-0.0023 (6)
C11	0.0182 (8)	0.0100 (7)	0.0134 (7)	0.0015 (6)	0.0048 (6)	-0.0012 (5)
C12	0.0200 (8)	0.0104 (7)	0.0135 (7)	0.0015 (6)	0.0040 (6)	-0.0008 (6)
C10	0.0225 (8)	0.0116 (7)	0.0145 (7)	0.0006 (6)	0.0063 (6)	0.0012 (6)
C4	0.0245 (8)	0.0130 (7)	0.0141 (7)	0.0045 (6)	0.0032 (6)	0.0018 (6)
C1	0.0182 (8)	0.0114 (7)	0.0145 (7)	0.0022 (6)	0.0060 (6)	-0.0017 (5)
C2	0.0162 (8)	0.0168 (8)	0.0179 (8)	0.0019 (6)	0.0026 (6)	-0.0030 (6)
C3	0.0218 (8)	0.0170 (8)	0.0152 (7)	0.0052 (6)	-0.0006 (6)	-0.0009 (6)

Geometric parameters (Å, °)

I1—C1	2.1037 (17)	С6—Н5	0.9500
I2—C8	2.1064 (17)	C14—C10	1.396 (2)
C8—C7	1.363 (2)	C11—C1	1.438 (2)
C8—C13	1.439 (2)	C11—C12	1.443 (2)
C9—C11	1.399 (2)	C12—C10	1.394 (2)
C9—C13	1.399 (2)	C12—C4	1.430 (2)
С9—Н7	0.9500	С10—Н8	0.9500
C13—C14	1.444 (2)	C4—C3	1.362 (3)
С7—С6	1.428 (2)	С4—Н3	0.9500
С7—Н6	0.9500	C1—C2	1.365 (2)
C5—C6	1.357 (3)	C2—C3	1.424 (2)
C5—C14	1.430 (2)	С2—Н1	0.9500
С5—Н4	0.9500	С3—Н2	0.9500
C7—C8—C13	121.86 (16)	C9—C11—C1	123.92 (15)
C7—C8—I2	117.86 (12)	C9—C11—C12	118.95 (15)
C13—C8—I2	120.26 (12)	C1—C11—C12	117.12 (15)
C11—C9—C13	121.88 (15)	C10-C12-C4	121.32 (15)
С11—С9—Н7	119.1	C10-C12-C11	119.07 (15)
С13—С9—Н7	119.1	C4—C12—C11	119.60 (15)
C9—C13—C8	123.96 (15)	C12-C10-C14	122.18 (15)
C9—C13—C14	119.05 (15)	С12—С10—Н8	118.9
C8—C13—C14	116.99 (15)	С14—С10—Н8	118.9
C8—C7—C6	120.19 (16)	C3—C4—C12	120.49 (15)
С8—С7—Н6	119.9	С3—С4—Н3	119.8
С6—С7—Н6	119.9	С12—С4—Н3	119.8
C6—C5—C14	120.88 (15)	C2—C1—C11	121.93 (15)
С6—С5—Н4	119.6	C2—C1—I1	117.90 (13)
С14—С5—Н4	119.6	C11—C1—I1	120.17 (12)
C5—C6—C7	120.50 (16)	C1—C2—C3	119.90 (16)
С5—С6—Н5	119.8	C1—C2—H1	120.0
С7—С6—Н5	119.8	C3—C2—H1	120.0
C10—C14—C5	121.54 (15)	C4—C3—C2	120.95 (16)
C10-C14-C13	118.87 (15)	С4—С3—Н2	119.5
C5—C14—C13	119.59 (15)	С2—С3—Н2	119.5

C11—C9—C13—C8	178.61 (15)	C9-C11-C12-C10	-0.2 (2)
C11—C9—C13—C14	-0.4 (2)	C1-C11-C12-C10	178.63 (14)
C7—C8—C13—C9	-179.73 (16)	C9—C11—C12—C4	-179.06 (15)
I2—C8—C13—C9	-1.4 (2)	C1—C11—C12—C4	-0.2 (2)
C7—C8—C13—C14	-0.7 (2)	C4-C12-C10-C14	178.48 (15)
I2—C8—C13—C14	177.65 (11)	C11-C12-C10-C14	-0.3 (2)
C13—C8—C7—C6	1.1 (2)	C5-C14-C10-C12	-178.59 (15)
I2—C8—C7—C6	-177.28 (12)	C13-C14-C10-C12	0.5 (2)
C14—C5—C6—C7	-0.1 (3)	C10-C12-C4-C3	-178.73 (16)
C8—C7—C6—C5	-0.7 (3)	C11—C12—C4—C3	0.1 (2)
C6—C5—C14—C10	179.61 (16)	C9—C11—C1—C2	178.97 (16)
C6—C5—C14—C13	0.5 (2)	C12—C11—C1—C2	0.2 (2)
C9-C13-C14-C10	-0.1 (2)	C9—C11—C1—I1	-0.2 (2)
C8-C13-C14-C10	-179.24 (14)	C12-C11-C1-I1	-178.97 (11)
C9—C13—C14—C5	178.98 (15)	C11—C1—C2—C3	0.0 (2)
C8—C13—C14—C5	-0.1 (2)	I1—C1—C2—C3	179.15 (12)
C13—C9—C11—C1	-178.17 (15)	C12—C4—C3—C2	0.1 (2)
C13—C9—C11—C12	0.6 (2)	C1—C2—C3—C4	-0.1 (2)

Fig. 2